Transfer of Polarized Radiation in Strongly Magnetized Plasmas and Thermal Emission from Magnetars: Effect of Vacuum Polarization

نویسنده

  • Dong Lai
چکیده

We present a theoretical study of radiative transfer in strongly magnetized electron-ion plasmas, focusing on the effect of vacuum polarization due to quantum electrodynamics. This study is directly relevant to thermal radiation from the surfaces of highly magnetized neutron stars, which have been detected in recent years. Strong-field vacuum polarization modifies the photon propagation modes in the plasma, and induces a “vacuum resonance” at which a polarized X-ray photon propagating outward in the neutron star atmosphere can convert from a low-opacity mode to a high-opacity mode and vice versa. The effectiveness of this mode conversion depends on the photon energy and the atmosphere density gradient. For a wide range of field strengths, 7 × 10 <∼ B <∼ a few × 10 G, the vacuum resonance lies between the photospheres of the two photon modes, and the emergent radiation spectrum from the neutron star is significantly modified by the vacuum resonance. (For lower field strengths, only the polarization spectrum is affected.) Under certain conditions, which depend on the field strength, photon energy and propagation direction, the vacuum resonance is accompanied by the phenomenon of mode collapse (at which the two photon modes become degenerate) and the breakdown of Faraday depolarization. Thus, the widely used description of radiative transfer based on photon modes is not adequate to treat the vacuum polarization effect rigorously. We study the evolution of polarized X-rays across the vacuum resonance and derive the transfer equation for the photon intensity matrix (Stokes parameters), taking into account the effect of birefringence of the plasma-vacuum medium, free-free absorption, and scatterings by electrons and ions. Subject headings: magnetic fields – radiative transfer – stars: neutron – stars: atmospheres – X-rays: stars

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matter and Radiation in Superstrong Magnetic Fields and Thermal Emission from Neutron Stars

Thermal surface emissions have now been detected from more than a dozen isolated neutron stars, including radio pulsars, radioquiet neutron stars and magnetars. These detections can potentially provide important information on the interior physics, magnetic fields, and surface composition of neutron stars. Understanding the properties of matter and radiative transfer in strong magnetic fields i...

متن کامل

Resonant Conversion of Photon Modes Due to Vacuum Polarization in a Magnetized Plasma: Implications for X-ray Emission from Magnetars

It is known that vacuum polarization can modify the photon propagation modes in the atmospheric plasma of a strongly magnetized neutron star. A resonance occurs when the effect of vacuum polarization on the photon modes balances that of the plasma. We show that a photon (with energy E >∼ a few keV) propagating outward in the atmosphere can convert from one polarization mode into another as it t...

متن کامل

Propagation Effects in Magnetized Transrelativistic Plasmas

The transfer of polarized radiation in magnetized and non-magnetized relativistic plasmas is an area of research with numerous flaws and gaps. The present paper is aimed at filling some gaps and eliminating the flaws. Starting from a Trubnikov’s linear response tensor for a vacuum wave with k = ω/c in thermal plasma, the analytic expression for the dielectric tensor is found in the limit of hig...

متن کامل

Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signat...

متن کامل

Polarization Evolution in A Strongly Magnetized Vacuum: QED Effect and Polarized X-ray Emission from Magnetized Neutron Stars

X-ray photons emitted from the surface or atmosphere of a magnetized neutron star is highly polarized. However, the observed polarization may be modified due to photon propagation through the star’s magnetosphere. For photon frequencies much larger than the typical radio frequency, vacuum birefringence due to strong-field quantum electrodynamics dominates over the plasma effect. We study the ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005